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Abstract
A multifractal analysis based on evaluation and interpretation of large deviation spectra is applied to plasma edge
turbulence data from different devices (MAST and Tore Supra). It is demonstrated that in spite of some universal
features there are unique characteristics for each device as well as for different confinement regimes. In the second
part of the exposition the issue of estimating the variable power law behavior of spectral densities is addressed. The
analysis of this issue is performed using fractional Brownian motion (fBm) as the underlying stochastic model whose
parameters are estimated locally in time by wavelet scale spectra. In this manner information about the inertial range
as well as variability of the fBm parameters is obtained giving more information important for understanding edge
turbulence and intermittency.

PACS numbers: 52.35.Ra, 05.65.+b, 47.11.St, 47.53+n, 52.55.Fa

1. Introduction

Plasma edge turbulence, known for a long time to be intermit-
tent in the scrape-off layer (SOL) [1], is the focus of intense
current research efforts aimed at understanding plasma con-
finement and dynamics of turbulent transport in magnetic fu-
sion devices which represent important issues related to the
control of confined plasma. Turbulence studies of the SOL
have revealed that intermittency in this region is caused by
large-scale coherent structures with high radial velocity desig-
nated as blobs (or avaloids). A natural route for understanding
turbulence and intermittency in the edge region of confinement
devices and related transport properties is to search for univer-
sal properties and differences between dynamics of different
systems and regimes. The first studies performed in this dir-
ection have concentrated on the search for long-range depen-
dence properties of plasma density fluctuations as well as on
their eventual self-similar properties [2, 3] and a similar treat-
ment has also been applied to floating potential fluctuations [3].
Self-similar processes were attractive models to describe scal-
ings of plasma fluctuations due to the fact that they are well
documented and mathematically well defined. In addition they
are relatively simple and parsimonious and each of their prop-
erties are controlled by the one unique parameter, H , known
as the Hurst parameter. It was soon realized that in spite of
observed self-similarity for several confinement devices, over

the mesoscale range of time scales, i.e. scales between 10 times
the turbulence decorrelation time and plasma confinement
time, different scaling laws exist in different time-scale ranges.
Hence, it became clear that self-similar processes are not ade-
quate to model the extremely complex plasma turbulence fluc-
tuations. The existence of long-range correlations, noticed
in several magnetic confinement devices, suggested that scal-
ing models with a single parameter are appropriate at large
temporal scales but at small scales, characteristic of intermit-
tency, more parameters are needed. As a consequence, a need
for multifractal analysis, an extension of monofractal analysis
which is based on the self-similarity concept, was recognized
recently. In spite of that, only a few studies were devoted to
the multifractal analysis of plasma fluctuations and, more imp-
ortantly, the multifractal analysis tools used were inadequate
to recognize subtle differences in various confinement devices
and hence deviations from universal characteristics [4–7].

Plasma turbulence studies usually rely on results obtained
for neutral fluid turbulence which may be beneficial from many
aspects although care must be taken in recognizing differences
and specific features of each. In particular, nonlinearities in
plasma turbulence are more numerous having different spectral
cascade directions in addition to the E×B nonlinearity, leading
to more complex fluctuating characteristics. One of the most
important differences is that time and space measurements
lead to different information on the structure of turbulence [6].
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Driving mechanisms and damping characteristics are reflected
in the temporal aspect of fluctuations while measurements
at different spatial locations provide information on spatial
structures for various scale lengths. For the case of neutral
fluids, time records of turbulent velocity at a single spatial
location obtained with the use of a hot-wire or laser Doppler
anemometer are usually interpreted via Taylor’s frozen flow
hypotheses, as one-dimensional spatial cuts through the flow.
However, this approach that generates information about
temporal measurements from spatial ones and vice versa is
not applicable in the case of plasma turbulence. Specifically,
turbulence in the case of neutral fluids is generated at a
certain spatial position and carried by the flow past the probe
location so that recordings at different times at a fixed location
are equivalent to simultaneous recordings at different spatial
locations along the flow. However, in plasma turbulence due to
the specific nature of nonlinearities, turbulence is created and
damped at the same spatial position where measurements are
taken so that spatial and temporal information is interwoven.
For the same reason the inertial range [8] may exist only locally
in space or in time, and the extent of this range changes along
the temporal scale as well as along space, for example, along
the poloidal direction. One of the main results of the study
presented here is to establish the existence of local (in time)
inertial range and to estimate its scaling properties for various
devices and confinement regimes. Proving the existence of
local inertial range and evaluating its characteristics may be of
great importance, among other things, in generating synthetic
random media for simulation of wave propagation in turbulent
plasma, relevant for Doppler reflectometry, for example.

One of the first important issues to be agreed upon
in the analysis of plasma turbulence, and in particular
intermittency and its multifractal character, is the choice of
relevant measure. In neutral fluid turbulence, in addition to
velocity, enstrophy and energy dissipation represent quantities
of particular interest although they cannot be constructed in
their entirety from a single point velocity time-series. These
quantities are usually replaced by the so-called surrogate fields
which take the form of a single component of many component
fields. Intermittency is usually studied via energy dissipation
rate whose complete expression is given by

ε(−→r ) = ν

2

∑
i,j

(
∂vi

∂xj

+
∂vj

∂xi

)2

, (1)

where ν is kinematic viscosity (viscosity divided by the fluid
density), vi is the i component of velocity and xi are spatial
coordinates. This expression evidently cannot be constructed
from recorded time-series as usually only the longitudinal and
transverse components of velocity, vx and vy , respectively,
are measured. To overcome the difficulty, expression (1) is
replaced by the so-called surrogate dissipation

εsurr(x) = Cν

(
∂vx

∂x

)2

, (2)

where C is a constant, sometimes taken equal to 15 [9]. Using
Taylor’s frozen flow hypothesis which is naturally justified in
neutral fluid turbulence, expression (2) becomes

εsurr(t) ∼ ν

(
∂vx

∂t

)2

. (3)

An important measure quantifying intermittency is the so-
called intermittency exponent. As proposed in [10], it may
be extracted from the slope of the two-point correlation
function of the energy dissipation field. This procedure may
be used to develop a criterion for constructing a measure,
analogous to the surrogate dissipation, relevant for plasma
turbulence and intermittency. In [11], it was demonstrated
that normalized two-point correlation function 〈εsurr(x +
�x)εsurr(x)〉/〈εsurr(x)〉2 scales as ∼ �x−µ, where µ is the
intermittency exponent. Studies in this reference and in [9] , for
the case of atmospheric turbulence, and studies in [12] and [13],
for the gaseous helium jet, found µ � 0.22, independent of
the Reynolds number.

In the exposition that follows we assume that ion saturation
current fluctuations, the only measured quantity used in this
exposition, are equivalent to density fluctuations as justified in
detail in [14] . Based on the above description for the case of
neutral fluid turbulence, we set as the goal construction of a
measure analogous to surrogate dissipation whose scaling of
two-point correlation function of L-mode fluctuations would
yield an intermittency exponent as close to the value for neutral
fluid turbulence as possible. The reason for choosing L-mode
fluctuations is supported by results presented further on in
this study, which imply that L-mode intermittent fluctuations
are very similar in their fractal and multifractal aspects to
the neutral fluid intermittency. A search for an appropriate
measure, based on heuristic arguments, was described in [6],
and proposed measures are

εn = (n − 〈n〉)2

〈(n − 〈n〉)2〉 (4)

and

εδn =

(
dn

dt
−

〈
dn

dt

〉)2

〈(
dn

dt
−

〈
dn

dt

〉)2
〉 . (5)

A similar measure with dn2/dt replacing dn/dt in (5) was
employed in [14]. However our study based on the analysis
of L-mode fluctuations in MAST, Tore Supra and PISCES
devices indicates that these two measures yield too high or
too low values for the intermittency exponent. The following
two measures
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n
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〉)2〉 , (7)

where c is a constant, which upon evaluation of the slope of
two-point correlation function yield intermittency exponent
µ ∼ 0.3, a value closer to the µ of neutral fluid intermittency
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Figure 1. Normalized two-point correlation function of the
surrogate dissipation measures obtained from the MAST 6861
L-mode density fluctuations. In the evaluation of two-point
correlators the measures used were (a) equation (4) or equation (5),
(b) equation (6) or equation (7) and (c) equation (5) with dn2/dt
replacing dn/dt . Measures were filtered with the Wiener filter and
(b) yields the optimal slope value ∼ .0.3.

than the values obtained from two-point correlation functions
of measures (4) and (5). Following Wiener filtering5 of
surrogate dissipation measures given by expressions (4), (5)
and (6) the obtained two-point correlators are compared
in figure 1 for the case of L-mode MAST ion saturation
fluctuations. Two-point correlation functions from measures
(6) and (7) yield the same slope so only one is presented in the
figure. The same slope values were obtained for the Tore Supra
data. It should be emphasized that measures in expressions
(6) and (7) are by no means expressions for dissipation
but rather surrogate quantities whose multifractal and two-
point correlation function properties give accurate information
about the burstiness property of the ion saturation current (i.e.
plasma density). Namely, one kind of burstiness arises from
dependences over long time periods as reflected in the long-
range correlation property and the second kind of burstiness
arises from fluctuations in amplitude and therefore concerns
small scale behaviour. These two types of burstiness are well
captured and quantified within the multifractal formalism by
measures that we propose here, (6) and (7).

The rest of the paper is organized as follows. In
section 2 we present basic features of multifractal processes
with special emphasis on large deviation spectra. In section 3
we present multifractal characteristics of L-mode and dithering
H-mode of the MAST device and the L-mode of the Tore
Supra device. This analysis is based on the large deviation
spectra which reveal features unobtainable using the traditional
Legendre or Hausdorff multifractal spectra. In section 4 local
features of turbulence are modelled using fractional Brownian
motion (fBm) and wavelet techniques, and results pertaining
to the two devices of section 3 are considered. Finally, in
section 5 we present our conclusions related to the universal
and idiosyncratic aspects of results obtained.

5 Wiener filtering mostly affects derivatives of the data so that the outcome is
particularly apparent in logarithmic coordinates. Its importance in the context
of neutral fluid turbulence may be found in [11].

2. Multifractal measures and properties

Multifractal measures can be built by iterating a simple
procedure called a multiplicative cascade whose various forms
are used to model the energy dissipation field of fully developed
turbulence, physically motivated by the Richardson cascade
model of energy transfer from large to small scales by random
breakup of eddies. The simplest example of such cascades
is the binomial measure on I = [0, 1] (e.g. [15]). Consider
the uniform probability measure µ0 on I , and split the unit
interval I into two subintervals I0 = [0, 1/2] and I1 =
[1/2, 1]. In the process mass m0 is spread uniformly over
I0 and m1 is spread over I1 so that m1 = 1 − m0 and it is
obvious that the density of measure µ1 is a step function.
With the two subintervals the procedure is repeated in the
same manner so that at the second stage the measures are
µ2[I00] = m0m0, µ2[I01] = m0m1, µ2[I10] = m1m0 and
µ2[I11] = m1m1. At stage n, the conserved mass equal to 1
is distributed among the 2n dyadic intervals Iε1...εn

according
to all possible products µ(Iε1...εn

) = mε1 ...mεn
, where mεi

are
denoted as multipliers. Iteration of this procedure generates
an infinite sequence of measures {µn} that weakly converge
to the binomial measure µ. The construction creates large
and increasing heterogeneity in the allocation of mass leading
to the multifractal properties. The binomial, like many
multifractals, is a continuous but singular probability measure
that has no density and no point mass. An extension of
such a procedure, more relevant for turbulence phenomena,
randomizes the allocation of mass between subintervals and
another procedure, also of relevance for turbulence research,
may also be employed with arbitrary distribution of multipliers
(with mass being conserved either at each stage of the process
or preserved only on the average) yielding multiplicative
measures characteristic of multifractals. The relevance of
such cascade processes in turbulence is discussed in, for
example, [8, 16].

Multifractality of measures is easily extended to functions
so that a stochastic process X(t) is called multifractal if it has
stationary increments and satisfies

E(|X(t)|q) = c(q)tτ(q)+1,

for all t and q belonging to intervals on the real line, and where
τ(q) and c(q) are functions with domain on the real line. The
function τ(q) is called the scaling function of the multifractal
process. It may be easily proved that τ(q) is concave, and
for self-similar processes, controlled by one exponent H , it
assumes a simple form

τ(q) = Hq − 1,

with H known as the Hurst exponent. The corresponding
process is called monofractal. For multifractal processes τ(q)

is nonlinear. The Legendre transform of the scaling function
τ(q) is called the Legendre multifractal spectrum:

f (α) = Inf
q

[αq − τ(q)].

In the above expression α is the local Hölder exponent, whose
meaning may be defined in the following way. Let ε(t) denote
the measure given either by expression (6) or expression (7) at
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time t ∈ [0, T ] so that the infinitesimal variation of measure ε

around time t is heuristically of the form

| ln ε(t + dt) − ln ε(t)| ∼ Ct(dt)α(t),

where α(t) is called the local Hölder exponent, while Ct is
the prefactor at t . From this definition it is apparent that α(t),
also known as local scale at t , quantifies the scaling properties
of the process at a given point in time so that lower values
correspond to more abrupt variations. Multifractal processes
contain a continuum of local scales and such a continuum is
reflected in the smooth Legendre spectrum f (α). Hence the
multifractal spectrum represents a convenient representation
for the distribution of Hölder exponents. The shape of the
spectrum is very sensitive to the distribution of multipliers so
that it may give important information about multiplicative
processes.

2.1. Large deviation spectrum

As mentioned earlier, the multifractal spectrum evaluated by
performing the Legendre transform of the scaling function
is a smooth function of local Hölder exponents. However
sometimes more information may be obtained from the
multifractal spectrum derived by applying the large deviation
theory. Noticing that the Hölder exponent may be defined as
the lim inf of the ratio

ln |ε(t + �t) − ε(t)|/ ln(�t) as �t → 0,

it is suggestive to estimate the distribution of local Hölder
exponents at a random instant. For that reason partition [0, T ]
into 2k subintervals [ti , ti +�t], where length �t = 2−kT , and
calculate for each subinterval the coarse Hölder exponent

αk(ti) ≡ ln |ε(ti + �t) − ε(ti)|/ ln(�t),

so that a set {αk(ti)} of 2k observations is formed. The range
of Hölder exponents is then divided into small intervals �α,
and let Nk(α) be the number of coarse exponents contained
in (α, α + �α]. Proceeding further, one could calculate
a histogram with relative frequencies Nk(α)/2k , which for
k → ∞ converge to the probability that a random time moment
t has Hölder exponent α. However since multifractals typically
have a dominant exponent α0 implying that α(t) = α0 at
almost every instant, the obtained histogram would degenerate
into a delta function, failing to give relevant information on a
multifractal process. Instead, the multifractal spectrum in the
context of the large deviation principle [15], denoted as large
deviation spectrum (LDS), is defined as

fLDS(α) := lim
k→∞

sup
ln Nk(α)

ln 2k
,

so that it represents the renormalized probability distribution
of local Hölder exponents. Indeed, Nk(α)/2k defines a
probability distribution on {αi : i = 0, ..., 2k − 1}. Referring
to the law of large numbers and the arguments given earlier, it
is expected that this distribution is concentrated more and more
about the most expected value as k increases so that fLDS(α)

measures how fast the probability Nk(α)/2k to observe an
atypical value of α decreases, i.e. Nk(α)/2k � 2f (α)−1. As far

f(α)

α

Figure 2. The spectrum of the lumping of two measures is the
maximum of the individual spectra. The resulting spectrum shows
clear signs of lumping and is not concave.

as the LDS of multiplicative measures is concerned, it directly
depends on the asymptotic distribution of αk which in turn
depends on the distribution of multipliers. Actually, most of
the mass of the multiplicative cascade concentrates on intervals
with Hölder exponents bounded away from the most probable
value α0, so that the LDS gives important information on these
‘rare events’. A usually determined Legendre multifractal
spectrum is concave by definition and represents the convex
hull of the LDS.

2.2. Atypical shapes of spectra

The most simple example for which the spectrum does not
exhibit a smooth concave shape is the sum of two measures
µ = µ1 + µ2. If the supports of µ1 and µ2 are disjoint, the
spectrum of their sum is the maximum of individual spectra
with lumps corresponding to each measure and this mechanism
of concavity deformation in the LDS is illustrated in figure 2
[17]. Naturally, a generalization to the superposition of more
than two measures leads to more lumps and a more irregular
(wavy-like) shape of the spectrum. The effects are similar
to the ones observed in figures 5 and 6. In such a case
the construction of two or more measures is identical from
the geometrical point of view, however, the difference stems
from the choice of multipliers. The nonconcave shape of the
spectrum may also be explained in terms of a phase transition.
Namely, at the α-value where the departure from concavity
occurs, the major contributor to the set of singularities changes
from one measure to the other.

In general, the departure from concavity of the LDS
indicates diversity of multiplicative laws and evidence for the
existence of several measures following such laws.

3. Large deviation spectra of plasma turbulence
intermittency

The goal of this section is to present a comparative
study of large deviation spectra of the boundary plasma
turbulence intermittency in the SOL. The ion saturation current
fluctuations of reciprocating Langmuir probe installed at the
edge of magnetic confinement devices are used for this
purpose. Recent experimental studies have suggested that
intermittency in the SOL of magnetic confinement devices
is caused by nonlocal coherent structures denoted as blobs
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or avaloids [18], which essentially are large-scale structures
with high radial velocity, ejected radially towards the wall and
encountered intermittently in SOL. These structures lead to a
direct loss of matter and energy and hence have a high impact
on confinement in contrast to the second type of coherent
structures which may exist in fusion devices, which represent
locally organized fluctuations and which, due to their nonradial
propagation, contribute less to the loss of confinement. We
study intermittency properties of two different devices, the
MAST spherical tokamak (L- and dithering H-mode) and the
Tore Supra tokamak with limiter configuration (L-mode).

Spectra presented here were generated by consistent use
of the measure given by (6) although both measures given by
expressions (6) and (7) yield identical large deviation spectra
so they may be used interchangeably.

3.1. MAST spectra

The datasets analysed here consist of measurements of the ion
saturation current (ISAT) performed by the moveable Langmuir
probe located at the outboard midplane on the MAST device
[19, 20]. The sampling rate was 1 MHz and during the
discharge the distance from the plasma edge to the probe
changed slowly. For this reason, time periods during which
the distance was approximately constant so that plasma current
and confinement modes were constant were chosen for the
analysis. The analysis of two confinement regimes, L-mode
and dithering H-mode, is presented here. Discharge 6861 is
high density L-mode plasma and 9031 represents a dithering
H-mode with heating power close to the threshold for L–
H transition with intermittent high frequency edge localized
modes (ELMs). Time-series of L-mode and dithering H-mode
signals are presented in figures 3 and 4, respectively. Other
relevant discharge parameters are presented in table 1.

The large deviation spectra for the 6861 L-mode and the
9031 dithering H-mode are presented in figures 5(a) and (b),
respectively, on five different scales, namely, for �t = 23, ...,
27. Measures given by expressions (6) and (7) yield identical
spectra. In figure 6 these two spectra, for �t = 23, 24, 25, are
presented together for easier comparison. The most striking
feature of these spectra is their departure from a pure bell-
shape and concavity and is a good example where large
deviation spectra provide more information than Legendre
spectra, which are strictly concave although they may be
asymmetrical. Their shape reflects the existence of several
multiplicative laws underlying the cascade processes so that
there is a lumping of measures whose supports are disjoint.
It is evident that the L-mode has more complex multifractal
structure in the sense that there are more α-values at which the
irregularity of the spectrum occurs (i.e. more phase changes)
than in the case of dithering H-mode. Hence, more measures
are lumped and consequently the cascade mechanism and
energy transfer is more complex in the case of the L-mode. The
right-hand slope of the spectra, both in the case of the L- and
the L/H- mode, is larger than the left-hand slope, indicating a
rich variety of strong singularities and their gradual probability
of occurrence.

When α is less than the most probable value of Hölder
exponent α0, it corresponds to divergent singularities since
ε(t) → ∞ as t → 0, while when α > α0 it reflects regular
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6861 L mode

Figure 3. Normalized ion saturation current fluctuations as a
function of time for the low confinement regime 6861 of the MAST
device.
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9031 L/H mode

Figure 4. Normalized ion saturation current fluctuations as a
function of time for the dithering H mode confinement regime of the
MAST device.

(bounded) singularities since ε(t) → 0 as t → 0. The fact
that both spectra are not symmetric again emphasizes the fact
that the processes involved are not purely multiplicative. This
implies that the energy across scales is not transported through
the generation of vortices and hence that it is not conserved
at each step of the process, although it may be conserved on
the average. This is closely related to random multiplicative
cascades mentioned earlier with mass being conserved not at
each stage of the process but on the average. The width of
the spectrum, defined as the |αmax − αmin|, is larger in the
case of the L-mode, due to the stronger intermittency effects.
Moreover, more irregular instants (degenerate singularities) of
fluctuations are present in the L-mode than in the dithering H-
mode since in the former case the width |αmin − α0| is larger
than in the latter case. Note also the location of the most
probable Hölder exponent α0, as α0 ∼ 0.6 for the L-mode
and slightly larger α0 ∼ 0.7 for the dithering H-mode. As
mentioned earlier, the shape of the spectra is determined by
the distribution of multipliers of the multiplicative process and
this issue will be addressed in detail elsewhere [21].

As a final remark we mention that measures in expressions
(6) and (7) proposed here as multifractal dissipation measures
for different dyadic intervals �t = 2k(k = 1, 2, ...) produce
large deviation spectra whose most probable Hölder exponents
coincide, which is not the case for other measures, such as
(4) or (5). Hence, evaluation of large deviation spectra, in
addition to two-point correlation functions, supports the choice

5
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Table 1. Discharge parameters for MAST data.

Plasma current Normalized electron Probe distance from Duration of
(kA) density ne/nG plasma edge (cm) signal (ms)

6861 L 665 0.69 4.4 ± 0.1 40
9031 L/H 535 0.42 5.7 ± 1.0 88
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6861 L(a)

–0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 α

f 
(α

)

9031 L/H(b)

Figure 5. (a) LDS of the L-mode signal 6861 of the MAST device
for five different scales �t = 23, ..., 27. Lumping of measures is
evident for singularities smaller than the most probable Hölder
exponent. (b) LDS for the dithering H-mode signal 9031 of the
MAST device for �t = 23, ..., 27. Measures given by expressions
(6) and (7) yield the same spectra. On both diagrams LDS curves
corresponding to different �t values may be identified at the left end
of the spectra. The innermost spectrum corresponds to �t = 23

while the outermost corresponds to �t = 27 with the spectra in
between corresponding to progressively increasing �t values.

for these measures. An illustration of the LDS obtained by the
application of the measure given by expression (4) is shown in
figure 7. Note that the position of the most probable Hölder
exponent α0 is shifted for each dyadic interval �t . This
same undesirable effect is seen in the LDS obtained from
measure (5).

3.1.1. Tore Supra spectra. The data were collected on the
Tore Supra tokamak, a fusion device with a major and minor
radii equal to R = 2.32 m and a = 0.76 m, respectively. The
reciprocating Langmuir probe, installed on the top of the Tore
Supra tokamak, contains two sets of three composite carbon
tips with 6 mm diameter toroidally separated by a distance
of 20 mm. The probe is immersed into the plasma of SOL
at a predetermined position and comes back in ∼ 150 ms.
Several plunges are performed during each discharge and
8000 data points were recorded at a frequency of 1 MHz. A
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0
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1
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f 
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)

6861 L

9031 L/H

Figure 6. Direct comparison of large deviation spectra presented in
figures 5(a) and (b) for �t = 23, 24, 25. At the left end the
innermost spectrum corresponds to �t = 23 while the outermost
corresponds to �t = 27.
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Figure 7. LDS for �t = 23, ..., 27 of the L-mode 6861 obtained
from measure (4). The position of the most probable Hölder
exponent α0 is shifted for each dyadic interval �t. The same spectra
are obtained from measure (5). Due to this shifting effect the
measures (4) and (5) are not suitable for evaluation of LDS. As in
figures 5 and 6, at the left end the innermost spectrum corresponds
to �t = 23 while the outermost corresponds to �t = 27.

detailed description of probes and data acquisition procedure is
provided in [14]. Four different signals, each of 8 ms duration,
are analyzed here and are shown in figure 8.

In the evaluation of large deviation spectra both measures
(6) and (7) were used and compared. Again, no difference
was noticed. Large deviation spectra of the four signals
are presented in figures 9(a)–(d). As in the case of MAST
turbulence data, rather than looking at the exact values of
the LDS spectra a considerable amount of information may
be obtained by inspecting the shape of the spectra. The
most striking feature in the spectra is nonexistence or very
mild lumping of measures with no superposition of measures.
This is in great contrast to the MAST intermittency where
lumping of measures is the most noticeable feature in the
shape of the spectra. More interestingly, the mild lumping
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Figure 9. Large deviation spectra for the L-mode signals (a) L1, (b) L2, (c) L3 and (d) L4 of the Tore Supra device. The spectra are almost
symmetric with respect to the most probable singularity value and practically there is no lumping of measures. The obtained spectra are the
same when either of the two measures (6) or (7) is used. In all diagrams the innermost spectrum corresponds to �t = 23 while the outermost
corresponds to �t = 27 with the spectra in between corresponding to progressively increasing �t values.

occurs for measures corresponding to regular singularities
while strong lumping in MAST intermittency corresponds to
divergent singularities. The overall shape of the spectra and the
arguments given above lead to the conclusion that statistical
distribution of multiplicative cascade multipliers is completely
different in the case of Tore Supra edge turbulence as compared
with the MAST case implying different energy transport
processes and different nonmultiplicative mechanisms which
accompany energy transfer across scales in two devices.
Without getting into details of calculations, we mention here
that distribution of multipliers of the multiplicative cascade in

the MAST turbulence is exponential while for the Tore Supra
device it is log-normal [21]. Another important feature of the
Tore Supra spectra is their smaller width αmax−αmin. However,
more striking is the smaller range of divergent singularities
|αmin − α0|, corresponding to the smaller number of rare
fluctuations. Hence, not only is the edge intermittency weaker
in Tore Supra fluctuations, it is less abundant in rare events.

Based on the above comparative analysis, in spite of
the universal multifractal character of fluctuations, there
are significant differences with important implications and
care must be taken when generalizing certain properties of
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fluctuations and when turning to specific features characteristic
of a distinct device. Proceeding further with the aim of better
understanding edge turbulence properties in fusion devices we
undertake the analysis, presented in the next two sections,
to provide time localized information about the essential
frequency content of the fluctuations and about the existence
of inertial range.

4. Estimation of local turbulence properties

Turbulent fluctuations, although highly nonstationary, usually
exhibit approximate stationarity in the appropriately chosen
segments within which spectral densities exhibit approximate
power law scaling. Estimation of the power law behaviour of
spectral densities from measured plasma edge fluctuations is
based upon appropriate segmentation of the data and the choice
of frequencies over which the search for power law behaviour is
performed. The analysis presented here is based on the method
and software presented in [22]. The motivation for such a
procedure is twofold. The first is to estimate the local temporal
variations in the correlation properties of the fluctuations and to
evaluate the variation of the absolute level of these correlations.
The second is the propagation of microwaves in plasma for the
purpose of Doppler reflectometry used for estimating plasma
rotation profiles and turbulence properties. Turbulent plasma
medium essentially possesses multifractional properties as
described in the previous sections, for example. However,
it may be modelled locally in time or space, by self-similar
(monofractal) fBm within the appropriately chosen temporal
(or spatial) segments. Since the temporal (spatial) aspect
matches the type of data which is analyzed, only the temporal
viewpoint is applied here.

FBm represents the most simple local power law process
which is nonstationary with stationary increments. The
variance of the stationary increments is quantified by the
structure function given by

E
{
(BH (t + �t) − BH(t))2

} = σ 2|�t |2H , H ∈ [0, 1].

(8)

In the above expression the Hurst exponent H determines
the correlation distance for the increments of the process and
the quantity σ 2 quantifies the absolute level of correlations.
Ordinary Brownian motion is characterized by a unique
exponent H = 1/2, so that regarding its multifractal properties
BH(t) has a local Hölder exponent α(t) = H , i.e. it is a
monofractal process. FBm is self-similar since BH(t) =
aHBH(t/a), where the equal to sign implies equality in
distribution. Increasing the exponent beyond this value, i.e.
H > 1/2, corresponds to positive correlations (persistence)
and long memory, while the case of H < 1/2 corresponds to
negative correlations (antipersistence). On a set of Lebesgue
measure 1, the multifractal process with H > 1/2 is more
regular than a Brownian motion.

A pseudo-spectrum may be associated with fBm by
removing the low frequencies [22], [23]. Let

X = BH ∗ ψ,

where the star denotes convolution and ψ a function that
integrates to zero so that its Fourier transform � vanishes at

zero frequency. Although BH is nonstationary, the process X/
is stationary and its power spectrum is

PX ∝ σ 2|ω|−(2H+1)|�(ω)|2.

Power law processes are usually observed through a filter that
cuts off very low frequencies so a power law may be associated
with fBm

PBH
∝ σ 2|ω|−(2H+1). (9)

In the Kolmogorov case H = 1/3 the spectrum is

PBH
∝ σ 2|ω|−5/3,

over some range of frequencies denoted as inertial range.
Since fBm is a self-similar process, expression (8) yields

unique parameter values for H and σ which characterize the
process in its entirety so these parameters may be described
as global. Since we are dealing with intermittent phenomena
which exhibit multifractal properties equation (8) may be used
to model plasma turbulence only in the restricted temporal
domain in which turbulent signal is self-similar. Evaluation
of parameters σ and H using equation (8) would therefore
be hindered by the requirement to detect temporal domains in
which this expression is valid. A more functional approach
is to detect a range of frequencies over which the power
law (9) pertains and then evaluate the parameters from the
same expression. Wavelet scale spectra are used for this
purpose because they provide time-scale decomposition that
is compliant with power law processes, independent of their
stationarity. Moreover, they are more flexible and adjustable to
self-similar processes as verified in numerous studies, e.g. [24].
Parameters of the power law model, σ and H , are functions
of time and these variations are modelled as a secondary
stochastic process in our approach. Naturally, the model is
applied only over a subset of scales known as the inertial
range. Usually multifractal data, besides variations in σ and
H , show variations in the inertial range itself. As explained in
the introduction, turbulence in plasma is created and damped
at the same spatial location so the existence and extent of the
inertial range need conclusive tests which we set as one of the
goals of this study.

The main steps in estimation of local turbulence properties
are the following.

1. Partitioning of data into segments of equal temporal extent
within which turbulent signal is approximately stationary.
A special filtering procedure is devised in order to remove
dependence of the estimated parameters on segmentation.

2. Wavelet decomposition of the data and evaluation of the
scale spectra within each segment.

3. Determination of the inertial range of the scale spectra and
evaluation of the power law parameters based on the fBm
model. The turbulent data corresponding to the inertial
range are assumed to be statistically well represented by
fractal Brownian motion. Local turbulence parameters σ

and H are therefore determined from the scale spectra
corresponding to the inertial range. The extent of the
inertial range varies from segment to segment and is rarely
equal to the segment size. Since inertial range exists over
specific scales (or equivalently over the corresponding
time range) evaluated parameters have local character.
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Important issues, relevant for interpretation of results, such
as the choice of segmentation and filtering to smooth out
the effects of segmentation, are described in detail in [22]
and [25]. The intervals of stationarity are determined from
a variogram (second order structure function) analysis of the
wavelet coefficients. We have checked the filtering procedure
to remove the effects of segmentation by choosing partitions
which are short relative to the estimates of stationarity as well
as the ones comparable to the intervals of stationarity. The
results obtained were independent of segmentation so that no
variability of the estimated parameters was detected.

4.1. Scale spectrum

Haar wavelets with narrow support, defined by

ψ(t) =

 −1 if −1 � x � −1/2,

1 if −1/2 � x < 0,

0 otherwise,

are a good choice for the analysis of turbulence due to their
simplicity and versatility, however other bases would also be
suitable. Let

n = (a0(1), a0(2), ..., a0(2
M)

denote the plasma density data, i.e. ion saturation current where
a0 are level zero approximation coefficients

a0(i) =
∫ i

i−1
n(t) dt.

Detail wavelet coefficients corresponding to the signal are then
calculated and the scale spectrum of n, relative to the Haar
wavelet basis, is the sequence Sj defined by

Sj = 1

2M−j

∑2M−j

i=1
(dj (i))

2, j = 1, 2, ..., M,

where j denotes the scale and dj are detail coefficients given
by

dj (i) = 1√
2j

∫ ∞

−∞
ψ(t/2j − i)n(t) dt.

The scale spectral point Sj is the mean square of the detail
coefficients at scale j so that the spectrum can be interpreted
as representing energy of the signal at different scales. If
the inertial range exists the scale spectrum will exhibit linear
scaling over a certain scale range j1 � j � j2. The
main goal now is to test whether this inertial range can be
modelled in a statistically satisfactory manner by a power law
model with well-known properties. For the fBm process the
scale spectrum, denoted as S

BH

j , is linear in the log–log plot,
assuming that the record is long enough. Actually, over a
suitable range of scales the mean of the log scale spectrum is
given by expression

E(log(S
BH

j )) ≈ c − p log Kj,

where p = −(2H + 1), c = c(H, σ) is a known function and
Kj is a temporal frequency

Kj = 1

τj

,

with τ1 = 1 µs (the lowest temporal resolution of the
data analyzed here). Hence, local Hurst exponents may be
calculated readily from the slope of the log scale spectrum. Of
particular interest is the value of H = 1/3 which corresponds
to Kolmogorov’s scaling.

Summarizing, the fBm scaling properties are used for
determination of a local power law process. For processes
under study, the power law (the exponent or slope) and the
multiplicative constant (log intercept of the scale spectrum) are
not constants. Instead, they both vary from segment to segment
as would be expected in a multifractal signal. The procedure
requires estimation of the inertial range whose existence and
extent also change with time. Turbulence parameters, Hurst
exponent H and parameter σ are calculated for each temporal
segment over scales for which the inertial range exists.

4.2. Statistics of the scale spectrum

Statistics of the Haar wavelet coefficients for fBm and the
power law estimates based on these statistics are presented
based on the detailed exposition given in [22]. We assume
that the data (ion saturation current in this case) corresponding
to the inertial range are the set of wavelet approximation
coefficients at level zero, that is

a0(i) =
∫ i

i−1
BH(t) dt,

where BH is fBm {BH(t); t � 0}. The wavelet coefficients are
normally distributed random variables with

E[dj (i)] = 0, (10)

Var[dj (i)] = σ 2 (1 − 2−2H )

(2H + 2)(2H + 1)
2j (2H+1),

Corr[dj1(i1)dj2(i2)] = |D/
√

l|2H+2

8(22H − 1)

{
δ2
l/Dδ2

1/D |t |2H+2
} |t=1.

Here
l = 2j2−j1 , j1 � j2,

is the relative scale,

D = |(2i2 − 1)l − (2i1 − 1)|,

is the relative location and

δ2
df (t) = f (t + d) − 2f (t) + f (t − d),

is the second order symmetric difference. Based on these
properties of wavelet coefficients the mean of the scale spectra
may be obtained

E[Sj ] = E[dj (i)
2] = σ 2h(H)2j (2H+1),

where

h(H) = (1 − 2−2H )

(2H + 2)(2H + 1)
.

Statistical properties of the logarithm of the scale spectra are
necessary for the least squares fit of the power law and we
summarize here only the most important results. In the large
Nj limit (Nj = 2M−j the number of detail coefficients at level
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j and 2M the total length of the data), distribution of scale
spectral points is normal

S
BH

j = E[SBH

j ]

(
1 +

vj√
Nj

)
, (11)

vj ∼ N (0, g(H)), for Nj → ∞.

In the above expression N (µ, s2) is the normal distribution
with mean µ and variance s2,

g(H) = lim
Nj →∞

{
4

Nj

∑Nj −1

k=0
(Nj − k)ρ2

H (k) − 2

}
,

and ρH (k) is the correlation coefficient of wavelet coefficients
at level k. Expression (11) leads to the asymptotic estimate

log2(S
BH

j ) = log2(E[SBH

j ]) +
vj√

Nj ln(2)
,

which may be written as

log2(Sj ) = log2(σ
2h(H)) + j (2H + 1) +

vj√
Nj ln(2)

= c + jp +
vj√

Nj ln(2)
, (j1 � j � j2).

The slope p and log intercept c are estimated from the data,
while the fluctuation term vj/

√
Nj is given by the central limit

theorem for the scale spectra for large Nj . Finally, the least
square method yields estimates for the Hurst exponent H and
parameter σ 2 as

Ĥ = (p̂ − 1)/2,

log2(σ
2) = ĉ − log2(h(Ĥ )).

4.3. Local features of MAST and Tore Supra edge turbulence

For the MAST data the sizes of segments ranged from 256 µs
to ∼ 2 ms, while for the Tore Supra partitioning was in the
range 256 µs to ∼ 1 ms. The lower limit of the segment size
is governed by the maximum temporal extent of the inertial
range. No effects of partitioning on estimation of the inertial
range or the turbulence parameters σ and H were detected
due to the procedure for removal of segmentation dependent
effects [22, 25].

Local turbulence modelling using fBm and wavelet
basis scaling properties show that indeed inertial range
in temporal domain exists and that it is possible to gain
important information about edge turbulence properties using
this approach. In particular, the scale spectra of MAST data
reveal a similar distribution of scaling range values between
0.0078 and 0.0625 rad µs−1 (the corresponding temporal range
is 32–256 µs) for both the L-mode and the dithering H-mode
confinement. It would be reasonable to anticipate different
distributions of inertial range values across segments for the
case of L- and H-modes if not the minimal and maximal
inertial range values (i.e. interval) themselves. In the dithering
H-mode case, apparently the variability of the inertial range
extent is enhanced by the switching process from low to high
confinement, so that the distribution of inertial range values is
practically the same as in the L-mode case. In figure 10 the
inertial range of four segments for the case of L-mode 6861of
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Figure 10. Scale spectra of several nonoverlapping approximately
stationary segments of the L-mode signal 6861 in the MAST device.
Stars represent reference Haar wavelet scales over which the power
law applies, i.e. the extent of inertial range. The segment size is
512 µs while the scale spectra from top to bottom correspond to
segments whose extent is 2048–2560 µs, 6144–6656 µs,
12800–13312 µs and 22016–22528 µs, respectively.
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Figure 11. Scale spectra of approximately stationary
nonoverlapping segments of the L-mode signal L1 in the Tore Supra
device. Stars at the bottom represent reference wavelet scales over
which the power law applies, i.e. the extent of inertial range. As in
figure 10 the segment size is 512 µs while the scale spectra from top
to bottom correspond to segments whose extent is 1536–2048 µs,
4096–4608 µs, 5632–6144 µs and 6656–7168 µs, respectively.

the MAST device is presented. In this and the subsequent
figure, temporal frequency is

Kj = 1

τj

= 21−j ,

while stars in the lower part of the graphs indicate the dyadic
extent (the range of j -values) of the estimated inertial range.
The corresponding temporal extent of the inertial range for
the four segments presented is ∼ 32 µs. The minimum and
the maximum scaling range values in the temporal domain for
the Tore Supra data are the same as in the MAST data case,
i.e. 32 and 256 µs. However taking all segments into account
there are more inertial ranges of extent larger than or equal
to 64 µs as compared with the MAST case. This is expected
based on the more regular and more symmetric large deviation
spectra, implying less strong intermittency in the Tore Supra
edge turbulence data. In figure 11 the inertial range of four
segments of the L-mode (L1 signal) of the Tore Supra device
is presented.
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Figure 12. Parameters of the fBm model, Hurst exponent and the variance at unit lag, for the L-mode of MAST. Note random variations of
each parameter reflecting multifractal character of the plasma density fluctuations. The smoothed values are represented by solid lines. Note
that the Hurst exponent fluctuates around the smoothed value H = 0.23.
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Figure 13. Parameters of the fBm model, Hurst exponent and the variance at unit lag for the dithering H-mode in MAST. Note random
variations of each parameter reflecting multifractal character of the plasma density fluctuations. The smoothed values are represented by
solid lines. Note the considerably lower value of the Hurst exponent than in the case of the L-mode.

Based on the fBm wavelet model (11), temporal variations
of the local Hurst exponent and the variance for the case of L-
and dithering H-mode MAST are presented in figures 12 and
13, respectively. Both parameters show random fluctuations
with local Hurst exponent fluctuations closer to Kolmogorov’s
value of 1/3 in the L-mode than in the H-mode case, so that
from that aspect of multifractality L-mode turbulence is similar
to the neutral fluid turbulence. In the case of the dithering H-
mode, figure 13, the average Hurst exponent value is lower
than in the L-mode case, however, it exhibits distinct random
variability from a minimum value of H = 0.1. Both cases
are typical of multifractal processes which show fast, random
fluctuations of the regularity parameter H .

Characteristics of local turbulence of the Tore Supra
device are presented in figures 14 and 15, where cases (plunges)
L1 and L4 are illustrated. Data L2 and L3 are not presented
since they are very similar to the L1 case. The striking feature
on both diagrams is the slow, almost deterministic variation
of the local Hurst exponent and the variance. For L4 data,
variability is somewhat larger, but it is almost periodic so
that it reflects the deterministic like character of the L1 case.

We may conclude that local processes in figures 14 and 15
display enough regularity which are not characteristic of the
true multifractals. Actually, these sets of Tore Supra edge
turbulence data are multifractional, rather then multifractal.
This is the term used for processes which are not multifractal
in the true sense since they may exhibit local irregularity as
reflected in the H value that is ‘deterministic’, meaning that it
is almost the same or predictable for all realizations, whereas
it is random for truly stochastic processes. Moreover, H

varies smoothly or very slowly while this is not the case in
a true multifractal process. Some of these features may have
been anticipated based on the shape of large deviation spectra,
however, analysis local in time or in space provides, besides
additional information, necessary conclusiveness.

5. Conclusion

Multifractal tools have been employed in order to test the
universality of the edge turbulence properties in various
magnetic confinement devices. It was shown that large
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Figure 14. Parameters of the fBm model, Hurst exponent and the variance at unit lag, for the L1 fluctuations of the Tore Supra device. Note
smoother, almost deterministic variations of each parameter in comparison with random fluctuations in the MAST case.
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Figure 15. Parameters of the fBm model, Hurst exponent and the variance at unit lag, for the L4 signal of the Tore Supra device. Variations
of these parameters is the largest among the Tore Supra data, although almost periodic variations in both parameters are readily noticeable.

deviation spectra represent powerful tools enabling advanced
insight into the multifractal processes and provide information
that is sensitive to the data and hence to the confinement
device in which the data were generated. Complemented
by an analysis of local turbulence based on the fBm and
wavelet scaling properties it was shown that turbulence
properties are different in the MAST device and the Tore
Supra tokamak, suggesting that new studies involving different
devices and possibly extensions of existing methods for
the analysis should be undertaken. The shapes of large
deviation spectra clearly suggest different energy transport
mechanisms in the two devices while local analysis reveals a
multifractional character of the processes in the Tore Supra
device in contrast to the genuine multifractal processes in
the MAST device. In the light of results presented here the
call for a careful interpretation of the universal characteristics
of edge turbulence data is evident. In addition, differences
over local temporal records of turbulence data for various
devices show how important local modelling based on the
fBm and wavelet scale spectra is for constructing an accurate
synthetic random medium for simulation of wave propagation
in turbulent plasma.
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